- Chaotic behavior in general relativity – J.D. Barrow
Просмотров: 2442
- Annotation
- Contents:
- 1. Introduction
- 2. Non-linear dynamics
- 2 1 Poincare return mappings
- 2.2. Invariant measures
- 2.3. Ergodk theory
- 2.4. Metric entropy
- 2.5. Topological entropy
- 3. losnwlogical dynamics
- 3.1. Homogeneous etymological models
- 3.2. Physical motivation
- 4. Mixmaster dynamical system
- 4.1. Mixmaster evolution
- 4.2. Mixmaster return mapping
- 4.3. Invariant measure and metric entropy
- 4.4. Continued fractions
- 5. Virntkms
- 5.1. Perturbations
- 5.2. Time evolution
- 6. Interconnections
- 6,1. Hamiltonian systems
- 6.2. Sources of chaos
- 6.3. Gravitational turbulence
- 6.4. Universality
- 6,5. Gravitational entropy
- 7. Conclusions
- Acknowledgements
- Appendix 1. Metric entropy
- Appendix 2. Poincare return mappings
- References
Похожие книги
- Chaotic behavior in general relativity – J.D. Barrow
- Encyclopedia of mathematics and its applications – Baker G.A.
- Geometry of yang-mills fields – Atiyah M.F.
- Notre dame mathematical lectures Number 2 – Dr. E. Artin
- Orthogonal polynomials and special functions – Askey R.