REFERENCES

M. F. Atiyah, Complex fibre bundles and ruled surfaces, Proc. London Math. Soc., 5 (1955), pp. 407-434.

M. F. Atiyah - V. G. Drinfeld - N. J. Hitchin - Yu. I. Manin, Construction of instantons, Phys. Lett., 65 A (1978), pp. 185-187.

M. F. Atiyah - N. J. Hitchin - I. M. Singer, Self-duality in four dimensional Biemannian geometry, Proc. Roy. Soc. Lond., A 362 (1978), pp. 425-461.

M. F. Atiyah - E. S. Ward, Instantons and algebraic geometry, Commun. Math. Phys., 55 (1977), pp. 117-124.

M. F. Atiyah - J. D. S. Jones, Topological aspects of Yang-Mills theory, Commun. Math. Phys., 61 (1978), pp. 97-118.

W. Barth, Moduli of vector bundles on the projective plane, Inventiones Math., 42 (1977), pp. 63-91.

W. Barth, Some properties of stable rank-2 vector bundles on Pn, Math. Ann. 226 (1977), pp. 125-150.

W. Barth - K. Hulek, Monads and moduli of vector bundles, Maniisoripta Math., 25 (1978), pp. 323-347.

A. Beilinson, The derived category of coherent sheaves on I'N, Funk. Analiz.,

(1978).

A. Belavin - A. Polyakov - A. Schwartz - Y. Tyupkin, Pseudoparticle so­lutions of the Yang-Mills equations, Phys. Lett., 59 B (1975), pp. 85-87.

J.-P. Bourguignon - H. B. Lawson - J. Simons, Stability and gap phenomena for Yang-Mills fields, Proc. Nat. Acad. Soi. U.S.A., 76 (1979), pp. 1550-1553.

S. Coleman, The uses of instantons, Lecture Notes, Erice Summer School 1977 (to be published hy Cambridge University Press).

N. Christ - N. Stanton - E. J. Weinberg, General self-dual Yang-Mills so­lutions, Columbia University preprint, 1978.

E. Corrigan - D. B. Fairlie, Scalar field theory and exact solutions to a clas­sical SU(2)-gauge theory, Phys. Lett., 67 B (1977), pp. 69-71.

E. Corrigan - D. B. Fairlie - P. Goddard - S. Templeton, A Green's func­tion for the general self-dual gauge field, preprint (E.N.S., Paris).

V. G. Drinfeld - Yu. I. Manin, Self-dual Yang-Mills fields on the sphere Funk. Analiz., 12 (1978), pp. 78-79.

V. G. Drinfeld - Yu. I. Manin, Locally free sheaves on CP3 associated to Yang-Mills fields, Uspekhi Mat. Nauk., 33 (1978), pp. 241-242.

V. G. Drinfeld - Yu. I. Manin, Instantons and sheaves on CP3, Punk. Analiz.,

(1979), pp. 59-74.

V. G. Drinfeld - Yu. I. Manin, A description of instantons (preprint, 1978).

I. M. Gel'fand - G. E. Shilov, Generalised Functions, vol. I, Academic Press.

I. M. Gel'fand - M. I. Graev - Y. Shapiro, Integral geometry on k-dimensional planes, Funk. Analiz., 1 (1967), pp. 15-31.

P. Goddard - J. Nuyts - D. Olive, Gauge theories and magnetic charge, Nuc­lear Physics, B 125 (1977), pp. 1-28.

H. Grauert - G. Mülich, Vektorbündel vom Bang 2 über dem n-dimensionalen homplex-projectiven Baum, Manuscripta Math., 16 (1975), pp. 75-100.

P. S. Green - J. Isenberg - P. Yasskin, Non-self-dual gauge fields, Phys. Lett., 78 B (1978), pp. 462-464.

P. A. Griffiths, The extension problem in complex analysis. - II: Embeddings with positive normal bundle, Amer. J. Math., 88 (1966), pp. 366-446.

A. Grothendieck, Sur la classification de fibré holomorphe sur la sphere de Biemann, Amer. J. Math., 79 (1957), pp. 121-138.

R. Hartshorne (to appear).

G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proe, London Math. Soc., 14 (1964), pp. 684-713.

N. J. Hitchin, Linear field equations on self-dual spaces (to appear in Proc. Roy. Soc.).

E. Jackiw - C. Nohl - C. Eebbi, Classical and semi-classical solutions to Yang- Mills theory, Proceedings 1977 Banff School, Plenum Press.

E. Jackiw - C. Nohl - C. Eebbi, Conformai properties of pseudo-particle con­figurations, Phys. Rev., 150 (1977), pp. 1642-1646.

R. L. Mills - C. N. Yang, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev., 96 (1954), p. 191.

A. Newlander - L. Nikenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math., 65 (1957), pp. 391-404.

E. Penrose, Zero rest-mass fields including gravitation-, asymptotic behaviour, Proc. Eoy. Soc., A 284 (1965), pp. 159-203.

R. Penrose, The Twistor programme, Eep. Mathematical Phys., 12 (1977), pp. 65-76.

J. Rawnsley, On the Atiyah-Hitchin vanishing theorem for certain cohomology groups of instantons bundles, Math. Ann., 241 (1979), pp. 43-56.

A. S. Schwartz, On regular solutions of Euclidean Yang-Mills equations, Phys. Lett., 67 B (1977), pp. 172-174.

J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, 6 (1956), pp. 1-42.

J.-P. Serre, Un théorème de dualité, Comm. Math. Helv., 29 (1955), pp. 2-26.

G. 't Hooft, On the phase transition towards permanent quarte confinement.

K. Uhlenbeck, Removable singularities in Yang-Mills fields, Bull. Amer. Math. Soc., 1 (1979), pp. 579-581.

E. S. Ward, On self-dual gauge fields, Phys. Lett., 61 A (1977), pp. 81-82.

H. Weyl, Gravitation und EleJctrizitat, Sitzungsberichte der Koniglich Preus- sischen Akademie der Wissenschaften, 26 (1918), pp. 465-480.

E. Witten, An interpretation of classical Yang-Mills theory, Phys. Lett., 77 B (1978), pp. 394-398.

F. John, The ultrahyperbolic differential equation with four independent vari­ables, Duke Math. J., 4 (1938), pp. 300-322.3. - Quaternionic formulae.

In this section we shall show how the construction of the preceding section, for 8p(n), can be formulated in terms of quaternions. We then obtain the explicit formulae given in Chapter II.

We recall that we have identified the space (74 with j?2 in such a way that the map a on Cl is given by left multiplication on H2 by the qua­ternion j. Similarly the vector space V of dimension 2k + 2n can be viewed as a left quaternion vector space of dimension h -f n with j given by the anti-linear map a.

The vector space W, of complex dimension Tc, has a with a2 = 1 and so can be viewed as the complexification of the real vector space WR left fixed by a. Then O4 0CW ^H2 WB and a corresponds again to multi­plication by j on the quaternion vector space J?2 WR.

The linear map 1(0): W^-V can now be viewed as a map

The main result of Chapter III was that solutions of the anti-self-dual Yang-Mills equations on 8l converted, via the Penrose transformation, to holomorphic bundles on P3(C). There is a parallel twistor interpretation for solutions of certain important linear differential equations. We shall show in this section that they correspond to elements of appropriate sheaf coho­mology groups.

We begin by considering the case of U(l) Yang-Mills theory. Although there are no global anti-self-dual solutions on S4, solutions certainly exist in B4 corresponding to solutions of the Euclidean Maxwell equations for a 2-form co: dco — 0, *o> = — o>. From Chapter III we know that these cor­respond to holomorphic line-bundles on P3(G) — Pi(0). If we ignore unitarity and work with complex-valued 2-forms the holomorphic line-bundle is unrestricted, except that it must be topologically trivial. As explained in Section 1 such a line-bundle is then described by an element of the coho­mology group H1(P3—Pu 0). Thus this group corresponds under the Penrose transformation to the solutions of the anti- self-dual Maxwell equa­tions on Bl. This is the type of correspondence which we propose to extend. As we shall see all the cohomology groups H1(P3— Plf 0{— m)) correspond in a similar way to solutions of other linear differential equations on JB4.