- The geometry and physics of knots – Atiyah M.
Просмотров: 1407
- Annotation
- Contents
- Preface
- 1. History and background
- 1.1 General introduction
- 1.2 Gauge theories
- 1.3 History of knot theory
- 1.4 The Jones polynomial
- 2. Topological quantum field theories
- 2.1 Axioms for a topological QFT
- 2.2 Functions
- 3. Non-abelian moduli spaces
- 3.1 Moduli spaces of representations
- 3.2 Moduli spaces of holomorphic bundles
- 4 Symplectic quotients
- 4.1 Geometric invariant theory
- 4.2 Symplectic quotients
- 4.3 Quantization
- 4.4 Co-adjoint orbits
- 5 The infinite-dimensional case
- 5.1 Connections on Riemann surfaces
- 5.2 Marked points
- 5.3 Boundary components
- 6 Projective flatness
- 6.1 The direct approach
- 6.2 Conformai field theory
- 6.3 Abelianization
- 6.4 Degeneration of curves
- 7 The Feynman integral formulation
- 7.1 The Chern-Simons Lagrangian
- 7.2 Stationary-phase approximations
- 7.3 The Hamiltonian formulation
- 8. Final comments
- 8.1 Vacuum vectors
- 8.2 Skein relations
- 8.3 Surgery formula
- 8.4 Outstanding problems
- 8.5 Disconnected Lie groups
- References
Похожие книги
- Chaotic behavior in general relativity – J.D. Barrow
- Encyclopedia of mathematics and its applications – Baker G.A.
- Geometry of yang-mills fields – Atiyah M.F.
- Notre dame mathematical lectures Number 2 – Dr. E. Artin
- Orthogonal polynomials and special functions – Askey R.