8.1   основа искусственного интеллекта

В общем-то, принципы мозговой деятельности известны и активно используются. Мы применяем незримые таблицы в нашей памяти, принудительно и вольно заполняемые за партой, за рулем, с министерским портфелем и без него, крутя головой на шумной улице, за книгой, у станка и у мольберта. Мы учимся, учимся всю жизнь: и школьник, проводящий бессонные ночи за букварем, и умудренный опытом профессор. Ибо с теми же таблицами мы связываем не только принятие решений, но и двигаемся, ходим, играем в мяч.

Если противопоставить ассоциативному мышлению математические вычисления, то каков же их вес в жизни человека? Как шло развитие человека, когда он вообще, не умел считать? Пользуясь ассоциативным мышлением, умея интерполировать и экстраполировать, человек накапливал опыт. (Кстати, вспомним тезис Д. Менделеева: «Наука начинается тогда, когда начинают считать».) Можно спросить читателя: «Сколько раз сегодня Вы считали?» Вы водили автомобиль, играли в теннис, торопились на автобус, планируя свои действия. Представляете, сколько бы Вам пришлось высчитывать (да еще где взять алгоритм?), для того чтобы поднять ногу на тротуар, минуя бордюр? Нет, мы ничего не вычисляем ежеминутно, и это, пожалуй, основное в нашей интеллектуальной жизни, даже в науке и бизнесе. Механизмы ощущений, интуиции, автоматизма, которые мы, не в силах объяснить, адресуем подкорковому мышлению, на деле являются нормальными механизмами ассоциативного мышления с помощью таблиц базы знаний.

И главное, мы делаем это быстро! Как же нам не задуматься, пытаясь постичь и воспроизвести?

Наука и техника обладают колоссальным опытом построения сложных систем только лишь на основе алгоритмических, математических методов расчета, исключая какие бы то ни было методы искусственного интеллекта. Алгоритмы вывода и наведения ракет-перехватчиков, расчет и выдача команд целеуказания и управления на борт по измеренным отклонениям впечатляют по объему вычислений, по частоте обновления данных и в конечном итоге по требованиям к производительности вычислительных средств. И мы все яснее понимаем, что моделирование процессов мозговой деятельности, воспроизводящих методы ассоциативного мышления, открывает самые широкие возможности, присущие живым организмам. Это и высокий универсализм, и высокое быстродействие.

Природа реализует самые простые принципы, утверждая, что «гениальное просто». Сложное обусловлено количеством и структурированием простого. Механизмы логического вывода, реализованные мозгом человека, основаны на простых логических элементах типа «если — то», «посылка — следствие», приемлемых даже для простейших. Огромное количество таких элементов в столь же простом взаимодействии, соединяясь и выстраиваясь в логические цепочки, воспроизводя иерархию и рекурсию, образуют сложные выводы, тотчас же обращенные для новых выводов.

Но, пожалуй, основное достоинство мозга — способность параллельного выполнения сложных логических предикатов и последовательного вычисления длинных логических цепочек. Такие действия достигаются, во-первых, при одновременной обработке всех сигналов, поступивших на рецепторы, и, во-вторых, при реализации каждым нейроном передаточной функции для поступивших сигналов. Передаточная функция является суррогатом логических функций булевых переменных для обработки действительных переменных.

Важно подчеркнуть, что информация перерабатывается в нейросети не непосредственно, а опосредствовано — на уровне оценок, на уровне ее воздействия на величину возбуждения рецепторов или нейронов входного слоя подструктур.

А как же наше формальное мышление, вторая сигнальная система по Павлову, а как конструирование алгоритмов и правил вычислений? Полагаем, что это — все более и более высокие уровни того же логического мышления, наслоение нейронной сети и продолжение логических цепочек, попутно приводящих к

развитию образной памяти, продукт роста в процессе Развития. Мы полагаем это вполне материально воплощенным и потому реализуемым искусственно, подвластным моделированию и воспроизведению.

Сформулируем теперь достаточный, сегодняшний принцип построения нейросети, как элемента ИИ:

1.   Следует признать, что основа имитации нейроструктуры мозга — это метод табличной интерполяции.

2.   Таблицы заполняются или по известным алгоритмам вычислений, или экспериментально, или экспертами.

3.   Нейросеть обеспечивает высокую скорость обработки таблиц за счет возможности лавинообразного распараллеливания.

4.   Кроме того, нейросеть допускает вход в таблицу с неточными и неполными данными, обеспечивая приблизительный ответ по принципу максимальной или средней похожести.

5.   Задача нейросетевой имитации мозга заключается в преобразовании не самой исходной информации, а оценок этой информации, в подмене информации величинами возбуждения рецепторов, искусно распределенных между видами, типами, параметрами, диапазонами их изменения или отдельными значениями.

6.   Нейроны выходного слоя каждой подструктуры своим возбуждением указывают на соответствующие решения. В то же время эти сигналы возбуждения на правах исходной опосредованной информации могут использоваться в следующем звене логической цепочки без внешнего вмешательства в рабочем режиме.