5.10.4. ЗАМЕЧАНИЯ

Мы описали два способа постановки задачи отыскания линейной разделяющей функции как задачи линейного программирования. Существуют и другие способы, среди которых особый интерес с вы* числительной точки зрения представляют те методы, которые сформулированы на основе двойственной задачи. Вообще говоря, методы типа симплекс-метода есть не что иное, как несколько усложненные методы градиентного спуска, предназначенные для отыскания экстремумов линейных функций при наличии ограничений в виде линейных неравенств. Подготовка алгоритма линейного программирования для решения на ЭВМ обычно представляет собой более сложную задачу по сравнению с такой же операцией, примененной для более простых процедур спуска, которые мы описывали ранее.

Однако блоки общего назначения, составленные для задачи линейного программирования, часто могут быть использованы либо без всяких изменений, либо с очень незначительными изменениями в других задачах. При этом сходимость процесса гарантирована как в случае линейной разделяемости, так и в случае, когда исходные выборки неразделяемы.

Различные алгоритмы для отыскания линейных разделяющих функций, описанные в данной главе, сведены в табл. 5.1. Естественно спросить, какой же из этих алгоритмов является наилучшим. Однозначного ответа на этот вопрос дать нельзя. Выбор подходящего алгоритма определяется такими фактами, как необходимые характеристики, простота программирования, количество и размерность выборок. Если линейная разделяющая функция обеспечивает незначительный процент ошибок, любая из этих процедур при корректном. ее применении позволит получить хорошее качество решения.