3.3. БАЙЕСОВСКИЙ КЛАССИФИКАТОР

Читателям, знакомым с математической статистикой, известно, что оценка по максимуму правдоподобия для ковариационной матрицы смещена, т. е. ожидаемое значение 2 не равно S. Несмещенная оценка для S задается выборочной ковариационной матрицей

Очевидно, что 2=[(тг—І)//г1С, так что эти две оценки, по существу, совпадают при большом п. Однако наличие двух сходных и тем не менее разных оценок для ковариационной матрицы смущает многих исследователей, так как, естественно, возникает вопрос; какая же из них «верная»? Ответить на это можно, сказав, что каждая из этих оценок ни верна, ни ложна: они просто различны. Наличие двух различных оценок на деЛе показывает, что единой оценки, включающей все свойства, которые только можно пожелать, не существует. Для наших целей сформулировать наиболее желательные свойства довольно сложно — нам нужна такая оценка, которая позволила бы наилучшим образом проводить классификацию. Хотя разрабатывать классификатор, используя оценки по максимуму правдоподобия для неизвестных параметров, обычно представляется разумным и логичным, вполне естествен вопрос, а нет ли других оценок, обеспечивающих еще лучшее качество работы. В данном разделе мы рассмотрим этот вопрос с байесовской точки зрения.